Interpretation of linear classifiers by means of feature relevance bounds
نویسندگان
چکیده
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولGeneralisation Error Bounds for Sparse Linear Classifiers
We provide small sample size bounds on the generalisation error of linear classiiers that are sparse in their dual representation given by the expansion coeecients of the weight vector in terms of the training data. These results theoretically justify algorithms like the Support Vector Machine, the Relevance Vector Machine and K-nearest-neighbour. The bounds are a-posteriori bounds to be evalua...
متن کاملUpper Bounds for Error Rates of Linear Combinations of Classifiers
ÐA useful notion of weak dependence between many classifiers constructed with the same training data is introduced. It is shown that if both this weak dependence is low and the expected margins are large, then decison rules based on linear combinations of these classifiers can achieve error rates that decrease exponentially fast. Empirical results with randomized trees and trees constructed via...
متن کاملstudy of cohesive devices in the textbook of english for the students of apsychology by rastegarpour
this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...
New Bounds and Approximations for the Error of Linear Classifiers
In this paper, we derive lower and upper bounds for the probability of error for a linear classifier, where the random vectors representing the underlying classes obey the multivariate normal distribution. The expression of the error is derived in the one-dimensional space, independently of the dimensionality of the original problem. Based on the two bounds, we propose an approximating expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2018
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2017.11.074